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1. Introduction 

*In this paper we shall focus on a sub-area of FLn 
that studies or uses formal deductive systems of fuzzy 
logic. Prototypical examples of such systems are 
those centered around H´ajek’s basic fuzzy logic BL 
of continuous t-norms, including for instance LÃ 
ukasiewicz, G¨odel, and product  logics, the logics 
MTL, LÃ Π, etc., both propositional (Atanassov, 
2005)  and first- or higher-order  .  The area also 
covers those parts of fuzzy mathematics (i.e., of FLb) 
which are built as deductive axiomatic theories 
based on these formal fuzzy logics.  To avoid a 
conflict of terms, we shall call this area deductive 

fuzzy logic (FLd).  Other parts of FLn and FLb will in 
the present paper be labeled traditional fuzzy logic 

(FLt), as the latter has a much longer tradition than 
the relatively newer FLd. 

The  aim  of this  paper  is to  point out  and  
analyze  certain  fundamental differences between  
FLd  and  FLt.   The differences are illustrated in 
three case studies, regarding respectively: 

 
1. Dubois and Prade’s notion of fuzzy element 
2. The notion of entropy of fuzzy sets 
3. Aggregation of fuzzy data 
 
Since the paper is methodological rather  than  

technical,  I omit most technical details and  focus on 
the  analysis  of the  principles  behind  the  

                                                
* Corresponding Author. 

approaches  of FLt  and  FLd.   I assume that the 
reader has a basic knowledge of some formal system 
of fuzzy logic, for instance H´ajek’s logic BL of 
continuous t-norms. Here I only briefly recapitulate 
some characteristic features of deductive fuzzy 
logics, which will be of importance for further 
considerations: 

• Deductive fuzzy logic is a kind of (many-valued) 
logic. Therefore, like other kinds of logics, it 
primarily studies preservation of some quality 
(“truth”) of propositions under inference.  In the 
particular case of formal fuzzy logic, the quality is 
partial truth, i.e., the degrees of truth.  Thus, 
deductive fuzzy logic interprets membership degrees 
exclusively as degrees of truth of the membership 
predication.   In this it differs from the rest of 
traditional fuzzy logic, which admits various 
interpretations of membership degrees. 

• As a kind of formal or symbolic logic, FLd strictly 
distinguishes syntax from semantics.  In syntax, 
deductive fuzzy logic works with some fixed 
language composed of propositional connectives, 
quantifiers, predicate and function symbols, and 
vari- ables. The symbols (and formulae built up from 
these symbols) are then interpreted in semantically 
models, which are composed of usual fuzzy sets and 
fuzzy relations of FLt.  In this way the formulae of the 
symbolic language formally describe actual fuzzy 
sets. 

• FLd is based on the axiomatic method and 
works in the formal deductive way. Valid statements 
about fuzzy sets are derived in an axiomatic theory, 
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through iterated application of sound rules of a 
particular system of deductive fuzzy logic.  Since FLd 
employs non-classical many-valued logic, formal 
theories in FLd can have some peculiar features, 
which are not met in standard axiomatic theories of 
FLt or classical mathematics. 

• Most systems of FLd impose specific constraints 
on some of its components.   For example, most 
systems of formal fuzzy logic require that 
conjunction be realized as a left-continuous t-norm, 
and are much less interested in other conjunctive 
operators studied in FLt.  A partial explanation of 
this selectiveness of FLd will be elaborated in the 
present paper.  It can be shown that such restrictions 
largely follow from the features of FLd listed above 
(viz the interpretation of degrees in terms of truth, 
the study of partial truth preservation, formal 
deducibility, etc.). 

A further explanation and illustration of these 
points, as well as an analysis of the difference 
between FLd and FLt which results from the above 
features of FLd, will be given in the following 
sections.  I will argue that  FLd is a rather  sharply 
delimited area of FLt, and  that  the  agenda  of FLd  
differs significantly  from that  of FLt.   Therefore, to 
avoid confusion in fuzzy set theory, we should 
clearly distinguish between their respective areas of 
competence. 

Case study 1:  Dubois and Prade’s gradual 

elements 

Dubois and Prade have introduced the notions of 
gradual element and gradual set by the following 
definitions: 

Definition 1. Let S be a set and L a complete 
lattice with top 1 and bottom 0. A fuzzy (or gradual) 
element e in S is identified with a (partial) 
assignment function ae: L \ {0} → S. 

 
Definition 2.  A gradual subset G in S is identified 

with  its  assignment  function  aG :L \ {0} → 2S . If S 

is fixed, we may simply speak of gradual sets. 
 
The assignment function of a gradual element 

need not be monotone or injective (cf. the middle 
points of certain asymmetric fuzzy intervals).  Fuzzy 
elements of this kind are met in many real-life 
situations (e.g., the average salary of older people).  
Gradual elements and gradual sets are claimed by 
the authors to be a missing primitive concept in 
fuzzy set theory. 

The authors proceed to define the fuzzy set 
induced by a gradual set, the membership of a 
gradual element in a fuzzy set, etc.  As these notions 
are not important for our present case, I refer the 
reader to the original article. We shall only notice 
that the operations proposed for gradual sets are 
defined cut-wise (with possible rearrangements of 
cuts in the case of complementation). 

The  declared  motivation   for introducing  
gradual  elements  is to  distinguish  impreciseness  

(i.e.,  intervals)  from fuzziness  (i.e.,  gradual  change  

from 0 to  1).   As implicit in, a general guideline for 
definitions of fuzzy notions should be the following 
principle (we shall call it the principle of cuts): 

Principle of cuts:   The α-cuts  of a fuzzy notion  FX  

should be instances  of the corresponding crisp notion  

X, i.e., the  fuzzy version FX  of a crisp notion  X 
should be defined in such a way that the  α-cuts  of 
FX ’s are  X ’s.   Thus  the  fuzzy counterpart of the  
notion  of element  is exactly  the  fuzzy element of 
Definition 1, that  of the  notion  of set is the  gradual  
set of Definition 2, etc. 

The definitions of gradual sets and gradual 
elements are clearly sound and the notions will 
probably prove to be of considerable importance for 
FLt.  Let us see if they can be represented in FLd as 
well. A more detailed analysis of this question has 
been done in; here we extract its important parts: 

Apparently there are no direct counterparts of 
gradual elements or sets among the primitive 
concepts of current propositional or first-order fuzzy 
logics. Nevertheless, it can be shown that gradual 
elements and gradual sets are representable in 
higher-order fuzzy logic or simple fuzzy type theory. 

For technical details of the representation see; here 
we only sketch the construction: 

 
1. By the comprehension axioms of higher-order 

fuzzy logic, the notions of crisp kernel, fuzzy subset, 
fuzzy powerset, and crisp function are definable in 
higher-order fuzzy logic (freely available primer for 
details). 

2. By a standard construction, an internalization 
of truth degrees is definable in higher-order fuzzy 
logic (for the details of the construction and some 
meta-mathematical provisos).  The lattice that 
represents truth degrees within the theory is defined 
as L = Ker(Pow({a})), i.e., the kernel of the power set 
of the crisp singleton of any element a of the 
universe of discourse. (In fuzzy type theory of, this 
step can be omitted, since the set of truth values is a 
primitive concept there.) 

3. Since Definitions 1 and 2 need no further  
ingredients  beyond those listed in items (1)–(2), 
crisp functions from L to the domain of discourse or 
its powerset represent respectively  the  notions  of 
gradual  element and  gradual  set in higher-order  
fuzzy logic. By similar means, all other notions 
defined in can be defined in higher- order fuzzy logic 
as well (Esteva, 2001). 

In  particular, the  definitions  of gradual  
elements  and  gradual  sets  in the  standard 
framework of higher-order  logic (or fuzzy class 
theory ) run as follows: 

 
Definition 3.  A fuzzy element of S (in higher-

order fuzzy logic) is any (second-order) class E such 
that Crisp E & ∆(Dom E ⊆ L \ {∅}) & ∆(Rng E ⊆ S) & 
Fnc E . 

 
Definition 4.  A gradual subset of S in higher-

order fuzzy logic is any (second-order) class G such 
that Crisp G & ∆(Dom E ⊆ L \ {∅}) & ∆(Rng E ⊆ Ker 
Pow S) & Fnc G. 
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In this way, the FLt notions of gradual element 

and gradual set can also be defined in FLd of higher 
order.  However, their rendering in FLd is not very 
satisfactory.   First, the formal representatives in FLd 
of the simple FLt notions are rather complex—
namely certain very special second-order predicates, 
whose relationship to traditional fuzzy sets (i.e., 
first-order predicates) is far from perspicuous.    
Although  this presents  no obstacle to handling  
them  in the  formal framework of higher-order  
fuzzy logic, the  apparatus of FLd does not much 
simplify working with these notions  (unlike it does 
with traditional fuzzy sets), since they are 
represented  by crisp functions like in their semantic 
treatment by  FLt.    Considering  the  fundamental 
role fuzzy elements  are  to  play  in Dubois  and 
Prade’s recasting of fuzzy set theory, it would 
certainly be desirable to have fuzzy elements and 
gradual sets rendered more directly in FLd—as 
primitive notions rather  than  defined complex 
entities,  preferably of propositional  or first-order 
rather  than  higher-order  level. These demands, 
however, encounter the following deep-rooted 
difficulty: 

The  new notions  represent  the  horizontal  (cut-
wise)  view of a fuzzy set (construed as a system  of 
cuts),  while usual  fuzzy set  theory  represents  
fuzzy sets  vertically  (by membership  degrees of its 
elements).  Predicates  in first-order  fuzzy logic only 
formalize the vertical view of fuzzy sets; and 
although the latter  can also be represented  by 
systems of cuts,  all usual FLd systems  of first-order  
fuzzy logic require that  the  cuts  be nested. This 
requirement is already built in the propositional 
core of common formal fuzzy logics, all of which 
presuppose the following principle (further on, we 
shall call it the principle of persistence): 

Principle of persistence:   If a proposition ϕ is 
guaranteed to be (at least) α-true, and then it is also 

guaranteed to be (at least) β-true for all β ≤ α. 

The principle is manifested, i.e., in the transitivity 
of implication,  which is satisfied in all systems of 
FLd and is indispensable for multi-step  logical 
deduction (more on this in Case Study 3 below). 
Since Dubois and Prade’s gradual sets do not meet 
this requirement (the α-cuts need not be nested), the 
known systems of first-order fuzzy logic cannot 
represent them as fuzzy predicates.   (Similarly, 
known systems of propositional fuzzy logic cannot 
represent them as fuzzy propositions.) 

The reason why Dubois and Prade’s notions 
depart so radically from the presuppositions of FLd 
resides in the conceptual difference between the 
approaches to fuzziness in FLd and FLt.   In FLt, there 
are many possible interpretations of the meaning of 
mem- bership degrees.  In particular (as stressed by 
Dubois and Prade in), fuzzy sets may in FLt 
represent imprecision and (Bˇehounek, 2005) 
membership degrees the gradual change.  In FLd,  
however, membership  degrees are only interpreted 
as guaranteed degrees of truth; and fuzzy sets in FLd 
represent the degree of satisfaction  of truth 

conditions rather  than interval-like  imprecision.  
Thus  in FLt,  membership  degrees can be 
understood  as mere indices which parameterize the  
membership  in a fuzzy set and which allow the  
gradual change from 0 to 1 (“fuzziness by fibering”).  
In FLd, truth degrees are what is preserved in graded 
inference, i.e., preserved w.r.t.  The ordering of truth 
values; and this enforces the principle of persistence. 

It should be noticed that the principle of cuts, 
which motivates the distinction between gradual 
elements and fuzzy sets in, is not itself alien to FLd.  
On the contrary—when following a certain FLd-
sound methodology, many fuzzy counterparts of 
crisp notions do. 

In re-interpreting the formulae of classical crisp 
definitions in many valued logic. If fuzzy notions are 
defined in this natural way, then the principle of cuts 
is often observed: the α- cuts of fuzzy sets are crisp 
sets, the α-cuts of fuzzy relations are crisp relations, 
the α-cuts of fuzzy Dedekind or MacNeille cuts  come 
out as crisp Dedekind–MacNeille cuts, etc.  Unlike in 
FLt, however, in FLd the fuzzy notions have also to 
confirm to the principle of persistence; this 
constrains the α-cuts to nested systems of the 
corresponding crisp objects.  In the particular case of 
fuzzy elements, the α-cuts of an FLd fuzzy element a 
must  not  only be crisp  elements  (as  in FLt),  but  
also must  satisfy  the  principle  of persistence  for 
all formulae,  in particular for the  formula  x  = a.   
The latter already necessitates  that  the  α-cut  of a 

equals  its  β-cuts  for all β  ≤ α;  and  since this  
should hold for all α,  the  fuzzy element  a has to be 
constant.  Thus in FLd we can only have constant 
fuzzy elements, which can be identified with 
ordinary crisp elements.  Similarly, by enforcing the 
nesting of α-cuts, the principle of persistence 
reduces in FLd gradual sets to common fuzzy sets. 

No doubt fuzzy elements are a natural notion, 
abundant in many real-life situations; therefore the 
above difficulties should not stop us from 
investigating them.   There are no obstacles to 
investigating them in the framework of FLt.   
However, current FLd can only render them 
indirectly in a higher-order setting, since they do not 
conform to the principle of persistence upon which 
all current systems of FLd are founded.  Thus even 
though (advanced) FLd can (clumsily) capture the 
new notions, they actually do not fall into its primary 
area; and so the way in which FLd can contribute to 
the investigation of these notion is rather limited.4   
This of course does not diminish the importance of 
the new notions for FLt and does not even exclude 
the usefulness of their formal counterparts in some 
parts of FLd (Dubois, 2005).   

The above analysis only shows that  when 
employing fuzzy elements in  FLd,  we shall  have  to  
deal  with  complex  objects  (crisp  functions  from  
the  set  of internalized  truth values) rather  than  
some kind of more primitive  notion. 

A further analysis will be needed to find out if 
Dubois and Prade’s gradual elements and sets can be 
treated propositionally or as a primitive first-order 
notion in a radically new system of deductive fuzzy 
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logic. Since a direct logical rendering of gradual sets 
would need to  drop  the  principle  of persistence,  it  
would have  to  adopt  an  entirely  different concept 
of truth preservation  under  inference; such a 
radical change would consequently affect virtually  
all logical notions.    

Unfortunately, many straightforward approaches 
are not viable, as they would trivialize the theory.  
E.g., a notion of truth preservation  based on the 
identity  (rather  than  order)  of truth degrees would 
reduce truth degrees to mere indices exactly  in the  
way FLt  does; however,  it  would trivialize  the  
logic to  classical Boolean logic.5    From  the  
opposite  point of view, this  could be an  indication  
that  by treating membership  degrees as mere 
indices (rather  than  truth degrees that  should be 
preserved under graded inference), FLt does not in 
fact step out of the classical framework; it is the 
gradual inference what makes things genuinely fuzzy 
from the FLd point of view, rather  than  just 
employing some set of indices like [0, 1]. 

3. Case study 2:  The entropy of a fuzzy set 

Various definitions of the entropy of a fuzzy set 
have been proposed in traditional fuzzy 
mathematics, for instance: 

• De Luca and Termini’s entropy Ek (A) = Dk (A) + 
Dk (Ac) 

• Yager’s entropy Yp(A)  = 1 − `p(A, Ac)/(`p(A, 

∅))p 
• Kaufmann’s entropy Kp(A) = 2n−1/p · `p(A, A) 
• Kosko’s entropy Rp(A) = `p(A, A)/`p(A, A) 
 
where A is a finite [0, 1]-valued fuzzy set; Ac  is its 

additive complement,  Ac(x) = 1 − A(x); A is defined 
as A(x) = 1 if A(x) ≥ 0.5, and 0 otherwise;  A = (A)c ; p, 

k are parameters, p ≥ 1 and k > 0; Dk (A)  = −k Pi A(xi) 
log A(xi); and `p   is the  distance  between finite 
fuzzy sets defined as `p(A, B) = (Pi |A(xi) − B(xi)| ). 

The common feature of all such entropy 
measures is that they assign the minimal (zero) 
entropy to crisp sets, and maximal (unit) entropy to 
fuzzy sets with A(x) = 0.5 for all x in the universe of 
discourse. 

The definition is motivated  (and the name 
entropy justified) by the idea that  the membership 
degree 0.5 tells us the least amount of information 
(“nothing”) about the member ship of x in A.  In other 
words, that the membership degree of 0.5 gives us 
the same degree of “certainty” that x belongs to A as 
that x does not belong to A, and so it provides us 
with no information (knowledge) as to whether x 

belongs to A.  The membership degrees of 0 and 1, on 
the other hand, give us full “knowledge” or 
“certainty” about the member- ship of x in A, and 
thus provide us with maximal information as regards 
the membership of x in A.   The  degree of fuzziness, 
measured  by the  entropy  measures,  thus  (in  FLt) 
expresses the informational  contents  contained  in 
the fuzziness of the fuzzy set. 

In FLd, on the other hand, such concepts of 
entropy do not have good motivation. This  is 

because in FLd,  the  membership  degree cannot  be 
interpreted as the  degree of knowledge or certainty  

of whether  x belongs to A or not,  but  only as the  
degree of the (guaranteed) truth  of the  statement 
that  x  belongs to A.   From  the  FLd  point  of view it 
is not  true  that  A(x) = 0.5 gives us the  least  
information  on the  membership  in A. On the 
contrary each membership degree gives us the same 
(namely, full) information about the extent of 
membership in A (Cintula, 2006). 

The difference between the information 
conveyed by membership degrees in FLt and FLd can 
be illustrated by the following consideration.    We 
have the following trivial observation in all usual 
systems of FLd that contain a well-behaved 
implication connective ⇒. 

Fact 5, If it is provable that A(z)  ⇒ ϕ(z)  for all z, 
then  for any membership  degree α, if the truth 
degree of A(x) is α, then the truth degree of ϕ(x) is at 
least α. 

Thus  in FLd, if we know that  x ∈ A is true  to 
degree 0.5 and that  all elements of A satisfy some 
property  ϕ (in the sense of FLd—i.e., that  A(z)  ⇒ 
ϕ(z)  is valid for all z), then we know that  x satisfies 
ϕ at least to degree 0.5. Therefore in FLd, the truth 
degree of 0.5 does not represent “no knowledge” or 
“equal possibility of both cases”. Rather, like any 
other membership degree, it represents a certain 
guaranteed degree of participation of x on the 
properties of A.  In other words, any membership 
degree α of x ∈ A tells us in FLd that the properties 
entailed by the membership in A will be satisfied by 
x at least to degree α. 

From the informational point of view, in FLd (as 
shown by Fact 5) the membership degree 0.5 
restricts the possible truth values of ϕ(x), for any 
property ϕ entailed by the membership in A, to the 
interval [0.5, 1]. In this sense, the least informative  
membership degree  should  in  FLd  be  0 (as  it  
does not  restrict  the  interval  at  all)  and  the  most 
informative degree should be 1 (as it maximally 
restricts the interval to the single value 1). However, 
0 is also the  most informative  (and  1 the  least 
informative)  degree as regards the satisfaction  by x 

of the properties  of another  set, namely Ac.  
Therefore in FLd, the informational contents of 
membership degrees are not determined simply by 
their value. 

Thus from the point of view of FLd, no 
membership degree conveys more information than 
another just by its value.  Therefore,  no concept of 
entropy  which assigns the least informational  
contents  to  the  fuzzy set  with  A(x) = 0.5 for all x  is 
well-motivated  in FLd.  Consequently  we have to 
conclude that  the  notions  of entropy  belong to the  
area of FLt rather  than  FLd; and even though they 
can be defined in higher-order FLd,8  their 
significance in FLd and the extent to which FLd can 
help investigate them is limited.  This does not deny 
their importance and good motivation in FLt under 
the interpretations of membership degrees as 
indicated above (of knowledge, certainty, etc.); only 
they are not meaningful for the concept of 
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guaranteed truth, which is the domain of FLd. As 
stressed above, the unmotivatedness of the concept 
of entropy  in FLd is caused by the fact that  
membership degrees represent in FLd the degrees of 
truth  (of the statement “x ∈ A”) rather  than the 
degrees of knowledge or certainty  about x ∈ A.  The 
uncertainty about x ∈ A would not in FLd is 
expressed by an intermediate membership degree, 
but rather by an uncertain membership degree. The 
first idea how to render uncertain mem- bership 
degrees in FLd are, obviously, to take a crisp or fuzzy 
set of possible membership degrees, like in interval-
valued fuzzy sets or type-2 fuzzy sets.  However, in 
the framework of FLd, this idea has to be refined: a 
fuzzy set of membership degrees does not in FLd 
represent the degree of certainty or knowledge 
about the membership degrees, ei- ther, but only 
expresses the degree of truth of some property of 
membership degrees. Thus it would be necessary to 
introduce some modality, e.g., “it is known that”, and 
interpret the fuzzy set of membership degrees α as 
expressing the truth degree of the statement “it is 
known that the membership degree of x ∈ A is α”, 
rather than the degree of knowledge itself.  This 
subtle difference is insignificant for atomic epistemic 
statements, but plays a role when considering 
complex epistemic statements composed by means 
of propositional connectives (for more on this 

distinction.  The rendering of the uncertainty of 
membership  in a fuzzy set,  which motivates  the  
notion  of entropy  in FLt,  is thus  in FLd much more 
complicated  than  what is expressed by simple 
intermediary membership degrees. 

4. Case study 3:  Aggregation of fuzzy data 

The exclusive interpretation of membership 
degrees as guaranteed degrees of truth leads to 
certain restrictions on admissible logical systems of 
FLd.  Since the intended interpretation “truth at  
least to α”  is based on an order (“at  least”)  of truth 
degrees, logical systems suitable for FLd have to be 
among the logics of partially  ordered (or at least 
preordered) algebras  or  logical matrices,  i.e.,  
among  Rasiowa’s implicative  logics or  Cintula’s 
weakly implicative  logics. The  property  of 
prelinearity,  advocated  in as the characteristic 
feature  of deductive  fuzzy  logics, then  leads to  
Cintula’s  class of weakly implicative fuzzy logics. 
Another condition that further (de, 1972) constrains 
the class of logical systems best suitable for 
deductive fuzzy logic is the law of residuation. As will 
be shown in this section, the law of residuation and 
related requirements present another important 
difference between FLd and FLt. 

 

 
Fig. 1: Modus operandi of applied FLt 

 
Another  observation  is that  the  data  that  enter  

the  aggregation  and  inference are usually extra-
logical (measured in the real world, read from a 
database  etc.).  In particular, they usually do not 
contain the operators J and → of the inference 
mechanism, and so in FLt inference one usually need 
not consider nested implications (the formulae 
expressing the inference laws are “flat”). The 
situation in FLd is different, as is the typical modus 
operandi of FLd.     

The formally-deductive aims of FLd require the 
preservation of guaranteed truth values also in 
successive (iterated) inferences, which are typical 
for multiple-step deductions.  In formal derivations 
we often have intermediary steps and results, 
lemmata, partial conclusions, etc., and we want the 
guaranteed truth degree of a conclusion to remain 
coherent through- out long deductions.  Therefore, a 

typical modus operandi of FLd is the one depicted in 
Fig. 2. 

Observe first that in the multiple-step derivations 
of FLd, the premises of the first steps still play a role 
in the following steps, since partial results enter 
further deductions. Furthermore, in the formally 
logical setting of FLd, formulae entering deductions 
need implication  thus  plays  a double  role in FLd  
deduction:   it  is used  for making  inferences,  but  
can  also occur as a connective  within  a formula  
that enters  the  inference as a premise or comes out  
as a conclusion.   Similarly  conjunction is used for 
the  aggregation  of premises, but  can also appear  as 
a connective  inside the premises  and  conclusions.   
If both roles of the operators are to match, they have 
to satisfy conditions that describe the match of the 
roles. Namely, whenever ϕ1 is a premise of 
implication (inference) and ϕ2   → ψ is its 
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conclusion, both roles of implication will accord if ϕ1   
and ϕ2   together (i.e., aggregated) imply ψ (since 
both ϕ1   and ϕ2   are after all premises for ψ—one 
in implication-as-inference and one in implication-
as-connective); and vice versa, if ϕ1   and ϕ2   jointly 
imply ψ, then ϕ1   alone should imply ϕ2   → ψ (for 
the same reason).  Similarly, ϕ1   and ϕ2   aggregated 
should imply ψ if and only if ϕ1 ¯ ϕ2 implies ψ (this 
corresponds to the match of both roles for 
conjunction).   Since by the earlier considerations 
implication-as-inference is in FLd understood as 
truth-preservation (i.e., the relation ≤), the 
requirement can be formulated as the condition 

 
ϕ1 ¯ ϕ2 ≤ ψ    if   ϕ1 ≤ ϕ2 → ψ                                     (1) 
 

The general form for an arbitrary number of 
premises as in Fig. 2 already follows from (1).  This 
law of residuation is therefore required in FLd for 
ensuring the coherence of the guaranteed truth 
thresholds in multiple-step deductions with nested 
implications, while it need not be required in one-
step inferences with flat formulae in FLt. The 
principle of residuation restricts significantly the 
class of conjunctive operator’s admissible in FLd. 

Together  with a few reasonable additional  
requirements  (see Remark 10 below) it confines the  
FLd-suitable [0, 1]-conjunctions  & to left-continuous  

t-norms  (or residuated  uninorms,  if we admit  
degrees of full truth). Other operators for fuzzy data 
aggregation are not meaningful in FLd, though they 
are both meaningful and important in FLt (as FLt 
need not preserve guaranteed truth degree in nested 
and iterated inferences). 

Like in the  case of fuzzy elements  and the  
notion  of entropy,  many  FLt  conjunctive operators  
are still definable in systems of deductive  fuzzy 
logic: e.g., a broad  class of t- norms which are not 

left-continuous  is representable  in the logic LÃ Π. 
Nevertheless, as in the cases above, the apparatus of 
FLd is most efficient for conjunctions to which the 
FLd systems are tailored, i.e., which respect the 
above constraints. 

Remark 8, the constraints on admissible 
conjunction connectives rule out the meaning- 
fulness of most cut-wise definitions in FLd.  Since 
most left-continuous  t-norms  are not idempotent, 
α-cuts  are in general not preserved  by conjunction  
in most systems of FLd (except in G¨odel fuzzy logic 
of the minimum t-norm).11  Thus, e.g., the cut-wise 
definition of the intersection  of fuzzy sets is from the 
FLd point of view only meaningful in G¨odel logic; in 
other  systems  of FLd,  the  cut-wise  intersection  
(which  equals  the  minimum- intersection)  does 
not satisfy the defining condition of intersection  that  
the membership degree of x in A ∩ B be the 
conjunction  of the membership  degrees of x in A 

and B, i.e., that  (A ∩ B)x  = Ax & Bx. 
Thus, e.g., Dubois and Prade’s definitions of 

elementary operations on gradual sets proposed in 
(which are cut-wise, as we noted in the first case 
study), can only be well- motivated in FLt.  Similar 
considerations restrict the FLd-meaningfulness of 
many parts of categorical (sheaf) approach to fuzzy 
sets, which often works cut-wise (i.e., fiber-wise) and 
thus belongs to FLt rather than FLd. 

Again,  this  does not  diminish  the  importance  
of cut-wise  notions  in FLt;  only we should be aware 
that  they are not well-motivated  in FLd.  In 
deductive fuzzy logic, many cut-wise notions can still 
be defined, and some of them do have some 
importance even in FLd.  For instance, in all logics 
based on continuous t-norms, the minimum 
conjunction ∧ and  maximum  disjunction  ∨ are 
definable,  and  by means  of these  connectives  one 
can define the cut-wise operations  of min-
intersection and max-union.  However, their role in 
FLd systems is different than that of the notions 
based on usual (strong) conjunction &; in particular, 
min-conjunction cannot be used as a surrogate for 
strong conjunction, since both connectives have 
different meaning.  Strong conjunction & represents 
the use of both conjuncts, while min-conjunction  ∧ 

represents  the use of any one of the conjuncts, as 
can be seen from the following equivalences valid in 
BL and related  systems: 

 
[(ϕ1  & ϕ2) → ψ] ↔ [ϕ1  → (ϕ2  → ψ)] (2) 

[(ϕ1  ∧ ϕ2) → ψ] ↔ [(ϕ1  → ψ) ∨ (ϕ2  → ψ)] (3) 

Since it is (2) that we need in iterated inference 
rather than (3), minimum conjunction cannot be 
used for aggregation of premises in FLd.  Similarly, 
min-intersection does not represent membership in 
both fuzzy sets, but only in any of them, and cannot 
be used in contexts when both Ax and Bx are 
required.   The following example demonstrates the 
methodological consequences of the distinction 
between the two conjunctions in FLd. 

Example 9, the notion of anti-symmetry of a fuzzy 
relation R w.r.t.  A similarity E defined with  min-
conjunction,  i.e., by inf xy (Rxy ∧ Ryx  → Exy)  as 
similarly in, is not  well-motivated  in FLd,  since in 
antisymmetry we clearly need both Rxy and Ryx  to 
infer Exy  (neither  Rxy  nor Ryx  alone is sufficient for 

Exy  in antisymmetric relations; cf. (3)).  Thus in FLd, 
we have to define antisymmetry with strong 
conjunction, i.e., as inf xy (Rxy & Ryx → Exy), even 
though some theorems of will then fail. 

From the deductive point of view, min-
conjunction anti-symmetry is only well-motivated in 
model logic. 

Remark 10,  As mentioned  at  the  beginning  of 
this  section,  the  requirements  on the transmission  
of truth in FLd lead to the defining conditions of 
Rasiowa’s implicative logics or Cintula’s  weakly 
implicative  (fuzzy)  logics.   However,  these  
conditions  only ensure good behavior  of fully true  

implication,  which then  corresponds  to  the  order  
of truth degrees.  Inferentially  sound behavior  of 
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partially true  implication  and  conjunction requires 
further  axioms, including the law of residuation  (as 
seen above), since only then implication internalizes 
the transmission  of partial  truth and conjunction  
internalizes the cumulation  of premises in graded 
inference. The latter law also makes formal systems 
of FLd belong to the well-known and widely studied 
class of substructural logics (in Ono’s sense, i.e., the 
logics of residuated lattices). 

Thus from the point of view of deductive fuzzy 
logic, Cintula’s class of weakly im- plicative fuzzy 
logic is still too broad.  Best suitable  logics for FLd 
are only those weakly implicative  fuzzy logics that  
satisfy residuation  and several natural requirements  
of the internalization of local consequence (namely  
the  logical axioms expressing the  antitony resp. 
isotony of implication in the first resp. second 
argument,  and associativity  and com- mutativity of 
conjunction;  cf.).  The resulting class can be 
understood as the formal mathematical delimitation 

of deductive fuzzy logics.  The above conditions 
characterize them as those weakly implicative fuzzy 
logics which are extensions or expansions of the 
logic UL of residuated  uninorms or, if we add the 
law of weakening ϕ → (ψ → ϕ), of the logic MTL of 
left-continuous  t-norms. 

Again this does not imply that other weakly 
implicative fuzzy logics or logics used in FLt are 
deficient.  However, only logics from the above 
defined class suit best to the motivation of FLd (i.e., 
transmission of guaranteed partial truth in multi-
step deductions) and admit the construction of 
formal fuzzy mathematics in the sense. This is 
because their implication and conjunction 
respectively internalize the local consequence 
relation and the cumulation of premises: they have, 
in Ono’s words, a “deductive face”. Other logics lie 
outside the primary area of interest of FLd, though 
they may be of their own importance and interest in 
FLt. 

 
Fig. 2: Modus operandi of FLd 

 

5. Conclusions 

The three case studies show that FLd differs from 
broader FLt in many aspects, including the area of 
competence, methods, motivation, formalism, etc.  It 
should perhaps be admit- ted those symbolic fuzzy 
logicians on the one hand and researchers in 
“mainstream fuzzy logic” on the other hand do rather 
different things and work in two distinct, even 
though related, areas (with some non-empty 
intersection).  Since after the years of usage there is 
no chance for changing the name “fuzzy logic” in 
either tradition, a suitable determinative adjective  
(like symbolic, formal,  mathematical,  or as proposed 
here, deductive ) attached to the name of the 
narrower  and younger of both  areas is probably  
the best solution to possible terminological 
confusions. 

It  is sometimes  complained  that  fuzzy logic 
does not  have a clear methodology  for defining its 
notions  and  the  direction  of research.   FLd, as its 
very narrow and specific branch, however, does 
possess a rather clear methodology, inherited for a 
large part from the methodology of non-classical 
logics and classical foundations of mathematics. This 

may be a consequence of the fact that FLd has chosen 
and clarified one of all possible interpretations of 
membership degrees, and now studies the 
properties of this single clarified concept.   FLt,  on 
the  other  hand,  admits  many  interpretations of 
membership degrees and  often tries  to investigate  
them  together,  without  separating  them  properly 
and without  clarifying carefully which of the 
possible interpretations is considered. 

A historical parallel can be seen in the early 
history of classical (crisp) set theory.  As noticed by 
Kreisel, Cantor’s notion of set was a mixture of at 
least three concepts finite sets of individuals, subsets 
of some domain, and properties (unbound classes). 
Part of the opposition against set theory was due to 
its confusion of these notions of set:  the crude 

mixture (as Kreisel calls it) did not possess good 
properties, and the paradoxes of naive set theory 
confirmed the bad feeling. Only after one element of 
the crude mixture (viz iterated  subsets)  was clearly 
separated  by Russell and  Zermelo and  shown to 
havegood and  rich enough properties,  the  notion  
of set could start  playing  its foundational role in 
mathematics. 

Similarly the  theory  of fuzzy sets presents  a 
mixture  of various  different  notions  of fuzzy set 
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(truth-based, possibility,  linguistic,  frequentistic,  
probabilistic,  etc.).   While FLd  has  distilled  one 
element of the  mixture  (namely  the  truth-based 
notion  of fuzzy set), FLt often continues to 
investigate the crude mixture as a whole, only 
partially  aware of the  distinctions  needed  to  be 
made.   (Not that   it never distinguishes the  areas  of 
applicability  of its own notions:  sometimes it does; 
but  often it forgets to do so or is not careful enough.) 

The methodological success of FLd and its 
advances should stimulate FLt to distin- guish with 
similar clarity the exact components of the crude 
mixture of notions of fuzzy set.  Theoretical gains 
from their clear separation and investigation of the 
most promising ones would certainly be large (as 
was, e.g., the gain from conceptual and 
methodological clarification of the notion of 
probability); some areas of FLt besides FLd (e.g., 
possibility theory) already seem to be close to such 
clarification 
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